Công nghệ Machine Learning tái tạo lại hình ảnh mặt đất từ vệ tinh

Trương Khánh Hợp, Hải Yến, Trịnh Đình Trọng| 13/07/2018 16:41
Theo dõi ICTVietnam trên

Leonardo da Vinci đã vẽ nên những bức họa nổi tiếng cho thấy tầm nhìn chim bay của một số vùng nước Ý với mức độ chi tiết không thể tin được cho tới sự ra đời của máy ảnh và các thiết bị bay. Nhưng bây giờ các nhà nghiên cứu đang làm việc về một vấn đề ngược lại: đưa ra một hình ảnh vệ tinh của bề mặt trái đất, khu vực đó sẽ trông như thế nào từ mặt đất? Hình ảnh mô phỏng đó có thể rõ đến mức nào?

Ngày nay chúng ta đã có câu trả lời nhờ công trình của Xuequing Deng và các đồng nghiệp tại Đại học California. Họ đã huấn luyện một thuật toán machine-learning tạo ra một hình ảnh mặt đất đơn giản bằng cách nhìn vào một ảnh vệ tinh bên trên.

Công nghệ này dựa trên một hình thức trí thông minh máy được biết đến như hệ thống sáng tạo đối lập. Điều này cần đến hai mạng neural là điểm phát và bộ phân biệt.

Điểm phát tạo ra các hình ảnh mà bộ phân  áp dụng vào một số tiêu chuẩn đã học, như cách tạo nên hình ảnh những đàn hươu cao cổ. Bằng cách sử dụng dữ liệu từ bộ phân, điểm phát dần học cách tạo ra các hình ảnh giống hươu cao cổ.

Trong trường hợp này, Deng và các đồng nghiệp lập trình điểm phân biệt sử dụng các hình ảnh thực cũng như các hình ảnh vệ tinh của thời điểm đó. Nhờ đó nó học cách liên kết các hình ảnh các tầng đất liện qua góc nhìn trên cao.

Dĩ nhiên, chất lượng của những dữ liệu này là quan trọng. Nhóm này sử dụng bản đồ mặt đất LCM2015, cho thấy tầm nhìn với độ phân giải 1 kilomet trên toàn lãnh thổ nước Anh. Tuy nhiên, nhóm này giới hạn lượng dữ liện xuống theo thang 71x71 kilomet bao gồm cả London và các vùng lân cận. Với mỗi điểm trên hệ thống, họ tải về một tầm nhìn mặt đất từ một kho dữ liệu trực tuyến mang tên Geograph.

Sau đó nhóm này lập trình điểm phân biệt với 16,000 cao cặp hình ảnh trên cao và mặt đất.

Bước tiếp theo là bắt đầu tạo ra những hình ảnh mặt đất. Máy phát được nạp vào một bộ gồm 4000 ảnh vệ tinh từ các vị trí cụ thể và phải tạo ra hình ảnh mặt đất tương ứng. Cả nhóm thử nghiệm hệ thống với 4000 ảnh trên cao và so sánh chúng với những hình ảnh mặt đất thực sự.

Kết quả nhận được khá thú vị. Mạng lưới xuất hình ảnh khá tốt mặc dù ảnh trên cao có chất lượng thấp. Những hình ảnh được tạo ra đã khắc họa được chất lượng hình ảnh mặt đất một cách cơ bản, như những con đường, nông thôn hay thành thị, và tương tự. "Những hình ảnh được tạo ra trông cũng khá tự nhiên, tuy nhiên chúng cũng thiếu khá nhiều chi tiết so với ảnh thực." Phát biểu bởi Deng và cộng sự.

Vậy công nghệ này hữu dụng đến mức nào? Một nhiệm vụ quan trọng cho các nhà địa lý là phải phân loại đất dựa trên cách sử dụng, ví dụ như nông thôn và thành thị.

Những hình ảnh mặt đất là rất quan trọng cho việc này. Tuy nhiên, cơ sở dữ liệu có sẵn có thể sẽ thiếu hụt, đặc biệt là với những vùng nông thôn, vì vậy các nhà địa lý sẽ phải nội suy giữa các hình ảnh, một phương phát vẫn tốt hơn đoán mò.

Hiện giờ Deng và các đồng nghiệp đang đưa ra một con đường hoàn toàn mới để quản lý sử dụng đất đai. Khi các nhà địa lý cần tầm nhìn mặt đất để xem bất kỳ vị trí nào, họ đơn giản chỉ cần tạo ra tầm nhìn với mạng lưới neural dựa trên hình ảnh vệ tinh.

Deng và cộng sự thậm chí còn so sánh giữa hai phương pháp - nội suy và phát hình ảnh. Kỹ thuật mới có vẻ như chỉ định đúng mục đích sử dụng đất tới 73% số lượt thử, trong khi phép nội suy chỉ chiếm có 65%.

Đó là một nghiên cứu thú vị có thể khiến cuốc sống của các nhà địa lý trở nên dễ dàng hơn rất nhiều. Nhưng Deng và các cộng sự có tham vọng lớn hơn. Họ hi vọng có thể cải thiện khả năng phát hình ảnh để trong tương lai nó sẽ tạo ra những hình ảnh mặt đất còn chi tiết hơn. Hẳn Leonardo da Vinci sẽ rất ấn tượng.

Nổi bật Tạp chí Thông tin & Truyền thông
  • Khai trương đại lý dịch vụ công trực tuyến đầu tiên tại Hà Nội
    Việc thúc đẩy hoạt động mô hình đại lý dịch vụ công trực tuyến góp phần thúc đẩy chuyển đổi số, hướng tới xây dựng chính quyền số, nâng cao tỷ lệ hồ sơ thủ tục hành chính được thực hiện trực tuyến, hướng tới mục tiêu 80% người dân sử dụng dịch vụ công trực tuyến vào năm 2025.
  • Các ưu tiên trong chương trình nghị sự năm 2025 của Liên hợp quốc
    Tổng thư ký Liên hợp quốc António Guterres giữa tháng 1/2025 đã trình bày các ưu tiên trong chương trình nghị sự năm 2025 của tổ chức đa phương lớn nhất hành tinh, nêu bật vấn đề thế giới tiếp tục đối mặt với những thách thức và bất ổn chưa từng thấy.
  • Kiến nghị hỗ trợ cơ quan báo chí ổn định, tiếp nhận nhân sự
    Trong dịp Tết Ất Tỵ 2025, công tác báo chí nói chung và thông tin tuyên truyền đối ngoại đã thực hiện đầy đủ những định hướng cơ bản và trọng tâm,… được dư luận báo chí nước ngoài chú ý, quan tâm, nhìn nhận Việt Nam là “con rồng nhỏ” của khu vực và thế giới.
  • Từ Stargate đến DeepSeek: Tương lai của AI và quyền riêng tư dữ liệu
    DeepSeek đã gây ra địa chấn với giới công nghệ khi tuyên bố chatbot R1 của họ có khả năng ngang bằng với các công nghệ trí tuệ nhân tạo (AI) hàng đầu của Mỹ, nhưng với chi phí thấp hơn nhiều. Điều này đã mang lại những tác động lớn đối với các công ty công nghệ lớn nói riêng và tương lai của AI nói chung.
  • ‏FPT ‏‏tại Nhật Bản‏‏ ‏ hướng tới mục tiêu 1 tỷ USD vào năm 2027‏
    ‏Nhật Bản -‏‏ thị trường xuất khẩu ‏‏dịch vụ CNTT‏‏ quan trọng nhất của FPT, chính thức ‏‏vượt‏‏ mốc doanh thu 500 triệu USD. Từ đó đặt nền móng vững chắc cho mục tiêu trở thành thị trường tỷ đô vào năm 2027.‏
Đừng bỏ lỡ
Công nghệ Machine Learning tái tạo lại hình ảnh mặt đất từ vệ tinh
POWERED BY ONECMS - A PRODUCT OF NEKO